4.7 Article

Planet Formation: An Optimized Population-synthesis Approach

期刊

ASTROPHYSICAL JOURNAL
卷 865, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/aada09

关键词

planet-disk interactions; planets and satellites: formation; planets and satellites: gaseous planets; planets and satellites: terrestrial planets; protoplanetary disks

向作者/读者索取更多资源

The physics of planet formation is investigated using a population synthesis approach. We develop a simple model for planetary growth including pebble and gas accretion, as well as orbital migration in an evolving protoplanetary disk. The model is run for a population of 2000 stars with a range of disk masses, disk radii, and initial protoplanet orbits. The resulting planetary distribution is compared with the observed population of extrasolar planets, and the model parameters are improved iteratively using a particle swarm optimization scheme. The characteristics of the final planetary systems are mainly controlled by the pebble isolation mass, which is the mass of a planet that perturbs nearby gas enough to halt the inward flux of drifting pebbles and stop growth. The pebble isolation mass increases with orbital distance such that giant planet cores can only form in the outer disk. Giants migrate inward, populating a wide range of final orbital distances. The best model fits have large initial protoplanet masses, short pebble drift timescales, low disk viscosities, and short atmospheric cooling times, all of which promote rapid growth. The model successfully reproduces the observed frequency and distribution of giant planets and brown dwarfs. The fit for super-Earths is poorer for single-planet systems, but improves steadily when more protoplanets are included. Although the study was designed to match the extrasolar planet distribution, analogs of the solar system form in 1-2% of systems that contain at least four protoplanets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据