4.6 Article

The Significance of an Excess in a Counting Experiment: Assessing the Impact of Systematic Uncertainties and the Case with a Gaussian Background

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4365/aab780

关键词

astroparticle physics; gamma-ray burst: general; methods: data analysis; methods: statistical

向作者/读者索取更多资源

Several experiments in high-energy physics and astrophysics can be treated as on/off measurements, where an observation potentially containing a new source or effect (on measurement) is contrasted with a background-only observation free of the effect (off measurement). In counting experiments, the significance of the new source or effect can be estimated with a widely used formula from Li & Ma, which assumes that both measurements are Poisson random variables. In this paper we study three other cases: (i) the ideal case where the background measurement has no uncertainty, which can be used to study the maximum sensitivity that an instrument can achieve, (ii) the case where the background estimate b in the off measurement has an additional systematic uncertainty, and (iii) the case where b is a Gaussian random variable instead of a Poisson random variable. The latter case applies when b comes from a model fitted on archival or ancillary data, or from the interpolation of a function fitted on data surrounding the candidate new source/effect. Practitioners typically use a formula that is only valid when b is large and when its uncertainty is very small, while we derive a general formula that can be applied in all regimes. We also develop simple methods that can be used to assess how much an estimate of significance is sensitive to systematic uncertainties on the efficiency or on the background. Examples of applications include the detection of short gamma-ray bursts and of new X-ray or.-ray sources. All the techniques presented in this paper are made available in a Python code that is ready to use.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据