4.5 Article

Entropy based segmentation of tumor from brain MR images - a study with teaching learning based optimization

期刊

PATTERN RECOGNITION LETTERS
卷 94, 期 -, 页码 87-95

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.patrec.2017.05.028

关键词

-

向作者/读者索取更多资源

Image processing plays an important role in various medical applications to support the computerized disease examination. Brain tumor, such as glioma is one of the life threatening cancers in humans and the premature diagnosis will improve the survival rate. Magnetic Resonance Image (MRI) is the widely considered imaging practice to record the glioma for the clinical study. Due to its complexity and varied modality, brain MRI needs the automated assessment technique. In this paper, a novel methodology based on meta-heuristic optimization approach is proposed to assist the brain MRI examination. This approach enhances and extracts the tumor core and edema sector from the brain MRI integrating the Teaching Learning Based Optimization (TLBO), entropy value, and level set / active contour based segmentation. The proposed method is tested on the images acquired using the Flair, TIC and T2 modalities. The experimental work is implemented and is evaluated using the CEREBRIX and BRAINIX dataset. Further, TLBO assisted approach is validated on the MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and achieved better values of Jaccard index, dice co-efficient, precision, sensitivity, specificity and accuracy. Hence the proposed segmentation approach is clinically significant. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据