4.6 Article

Effect of plasma on gas flow and air concentration in the effluent of a pulsed cold atmospheric pressure helium plasma jet

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6595/aadbd3

关键词

atmospheric pressure plasma jet; ionic wind; Rayleigh scattering; air admixing; Schlieren imaging; plasma-flow interactions; space charge

资金

  1. Department of Energy, Office of Fusion Energy Sciences [DE-SC0016053]
  2. U.S. Department of Energy (DOE) [DE-SC0016053] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

In this work, we report on the flow effects induced by a nanosecond pulsed helium cold atmospheric pressure plasma jet impinging on a glass substrate. Gas temperature measurements have been performed using optical emission spectroscopy including rotational spectra of OH(A-X) (0,0) and N-2 (C-B) (0,0) and resonance broadening of a helium emission line at 667.8 nm. The measured increase in gas temperature was less than 15 K. We have measured the air concentration distribution in the jet effluent by means of Rayleigh scattering exploiting the large difference in Rayleigh cross-section of air and helium. The obtained results show that the plasma causes a broadening of the helium channel suggesting an enhanced gas velocity and mixing with the ambient air. The impact of the plasma on the jet effluent is polarity dependent and is larger in the case of positive applied voltage pulses. Using an estimation of the increased gas velocity required to obtain the observed air concentrations, we have shown that both gas heating and electrohydrodynamic (EHD) forces related to the propagation of an ionization front are not causing the observed phenomena. The surface charge which can exist for a much longer time than the duration of the applied voltage pulse is the primary cause of the EHD forces on the bulk charges which lead to significant different air concentration profiles in the jet effluent for plasma on and off.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据