4.7 Article

The joint influence of albedo and insulation on roof performance: An observational study

期刊

ENERGY AND BUILDINGS
卷 93, 期 -, 页码 249-258

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.enbuild.2015.02.040

关键词

Cool roof; Roof albedo; Roof heat flux; Roof insulation

资金

  1. U.S. Department of Energy through Pennsylvania State University's Energy Efficiency Building Hub [DE-EE0004261]
  2. Helen Shipley Hunt Fund through Princeton University

向作者/读者索取更多资源

This article focuses on understanding the temperature and heat flux fields in building roofs, and how they are modulated by the interacting influences of albedo and insulation at annual, seasonal and diurnal scales. High precision heat flux plates and thermocouples were installed over multiple rooftops of varying insulation thickness and albedo in the Northeastern United States to monitor the temperature and the heat flux into and out of the roof structures for a whole year. Our analysis shows that while membrane reflectivity (albedo) plays a dominant role in reducing the heat conducted inward through the roof structures during the warmer months, insulation thickness becomes the main roof attribute in preventing heat loss from the buildings during colder months. On a diurnal scale, the thermal state of the white roof structures fluctuated little compared to black roof structures; membrane temperature over white roofs ranged between 10 degrees C and 45 degrees C during summer months compared to black membranes that ranged between 10 degrees C and 80 degrees C. Insulation thickness, apart from reducing the heat conducted through the roof structure, also delayed the transfer of heat, owing to the thermal inertia of the insulation layer. This has important implications for determining the peak heating and cooling times. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据