4.6 Article

Gene silencing by RNA interference in Sarcoptes scabiei: a molecular tool to identify novel therapeutic targets

期刊

PARASITES & VECTORS
卷 10, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s13071-017-2226-1

关键词

Scabies mites; Sarcoptes scabiei; RNA interference; Gene knockdown; Glutathione S-transferase

资金

  1. Australian Government National Health and Medical Research Council [1067192]
  2. Australian Research Council Future Fellowship [FT130101875]
  3. international PhD scholarship from the QIMR Berghofer MRI
  4. UQ international scholarship from the University of Queensland
  5. National Health and Medical Research Council of Australia [1067192] Funding Source: NHMRC
  6. Australian Research Council [FT130101875] Funding Source: Australian Research Council

向作者/读者索取更多资源

Background: Scabies is one of the most common and widespread parasitic skin infections globally, affecting a large range of mammals including humans, yet the molecular biology of Sarcoptes scabiei is astonishingly understudied. Research has been hampered primarily due to the difficulty of sampling or culturing these obligatory parasitic mites. A further and major impediment to identify and functionally analyse potential therapeutic targets from the recently emerging molecular databases is the lack of appropriate molecular tools. Methods: We performed standard BLAST based searches of the existing S. scabiei genome databases using sequences of genes described to be involved in RNA interference in Drosophila and the mite model organism Tetranychus urticae. Experimenting with the S. scabiei mu-class glutathione S-transferase (SsGST-mu1) as a candidate gene we explored the feasibility of gene knockdown in S. scabiei by double-stranded RNA-interference (dsRNAi). Results: We provide here an analysis of the existing S. scabiei draft genomes, confirming the presence of a double stranded RNA (dsRNA) - mediated silencing machinery. We report for the first time experimental gene silencing by RNA interference (RNAi) in S. scabiei. Non-invasive immersion of S. scabiei in dsRNA encoding an S. scabiei glutathione S-transferase mu-class 1 enzyme (SsGST-mu1) resulted in a 35% reduction in the transcription of the target gene compared to controls. Conclusions: A series of experiments identified the optimal conditions allowing systemic experimental RNAi without detrimental side effects on mite viability. This technique can now be used to address the key questions on the fundamental aspects of mite biology and pathogenesis, and to assess the potential therapeutic benefits of silencing S. scabiei target genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据