4.6 Article

Collisionless dynamics in two-dimensional bosonic gases

期刊

PHYSICAL REVIEW A
卷 98, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.98.043605

关键词

-

资金

  1. FFABR grant of the Italian Ministry of Education, University and Research

向作者/读者索取更多资源

We study the dynamics of dilute and ultracold bosonic gases in a quasi-two-dimensional (quasi-2D) configuration and in the collisionless regime. We adopt the 2D Landau-Vlasov equation to describe a three-dimensional gas under very strong harmonic confinement along one direction. We use this effective equation to investigate the speed of sound in quasi-2D bosonic gases, i.e., the sound propagation around a Bose-Einstein distribution in collisionless 2D gases. We derive coupled algebraic equations for the real and imaginary parts of the sound velocity, which are then solved also taking into account the equation of state of the 2D bosonic system. Above the Berezinskii-Kosterlitz-Thouless critical temperature we find that there is rapid growth of the imaginary component of the sound velocity, which implies a strong Landau damping. Quite remarkably, our theoretical results are in good agreement with very recent experimental data obtained with a uniform 2D Bose gas of Rb-87 atoms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据