4.6 Article

Preprotachykinin A is expressed by a distinct population of excitatory neurons in the mouse superficial spinal dorsal horn including cells that respond to noxious and pruritic stimuli

期刊

PAIN
卷 158, 期 3, 页码 440-456

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/j.pain.0000000000000778

关键词

Substance P; Tac1; Excitatory interneuron; Pain; Itch

资金

  1. Wellcome Trust [102645]
  2. MRC [MR/L003430/1]
  3. BBSRC [BB/N006119/1]
  4. Wellcome Trust [102645/Z/13/Z] Funding Source: Wellcome Trust
  5. Biotechnology and Biological Sciences Research Council [BB/N006119/1] Funding Source: researchfish
  6. Medical Research Council [MR/L003430/1] Funding Source: researchfish
  7. Wellcome Trust [102645/Z/13/Z] Funding Source: researchfish
  8. BBSRC [BB/N006119/1] Funding Source: UKRI
  9. MRC [MR/L003430/1] Funding Source: UKRI

向作者/读者索取更多资源

The superficial dorsal horn, which is the main target for nociceptive and pruritoceptive primary afferents, contains a high density of excitatory interneurons. Our understanding of their roles in somatosensory processing has been restricted by the difficulty of distinguishing functional populations among these cells. We recently defined 3 nonoverlapping populations among the excitatory neurons, based on the expression of neurotensin, neurokinin B, and gastrin-releasing peptide. Here we identify and characterise another population: neurons that express the tachykinin peptide substance P. We show with immunocytochemistry that its precursor protein (preprotachykinin A, PPTA) can be detected in; similar to 14% of lamina I-II neurons, and these are concentrated in the outer part of lamina II. Over 80% of the PPTA-positive cells lack the transcription factor Pax2 (which determines an inhibitory phenotype), and these account for similar to 15% of the excitatory neurons in this region. They are different from the neurotensin, neurokinin B, or gastrin-releasing peptide neurons, although many of them contain somatostatin, which is widely expressed among superficial dorsal horn excitatory interneurons. We show that many of these cells respond to noxious thermal and mechanical stimuli and to intradermal injection of pruritogens. Finally, we demonstrate that these cells can also be identified in a knock-in Cre mouse line (Tac1(Cre)), although our findings suggest that there is an additional population of neurons that transiently express PPTA. This population of substance P-expressing excitatory neurons is likely to play an important role in the transmission of signals that are perceived as pain and itch.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据