4.6 Article

MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation

期刊

OSTEOARTHRITIS AND CARTILAGE
卷 25, 期 4, 页码 521-532

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.joca.2016.11.006

关键词

Chondrocytes; Chondrogenesis; Histone deacetylase 2; MiRNA-92a-3p; Osteoarthritis

资金

  1. National Nature Science Foundation of China [81371941, 81572119, 81472101]
  2. Guangdong Provincial Natural Science Foundation of China [2013B021800295, 2015A020212015]

向作者/读者索取更多资源

Objective: Increased activity of histone deacetylase 2 (HDAC2) has been found in patients with osteoarthritis (OA) and cartilage matrix degradation and has been shown to mediate the repression of cartilage-specific gene expression in human chondrocytes. We aimed to determine whether microRNA-92a-3p (miR-92a-3p) regulates cartilage-specific gene expression via targeted HDAC2 in chondrogenesis and degradation. Methods: miR-92a-3p expression was assessed in vitro in a human mesenchymal stem cells (hMSCs) model of chondrogenesis and in normal and OA primary human chondrocytes (PHCs), and in normal and OA human cartilage by in situ hybridization. hMSCs and PHCs were transfected with miR-92a-3p or its antisense inhibitor (anti-miR-92a-3p), respectively. PHCs were transfected with miR-92a-3p or anti-miR-92a-3p for 24 h before chromatin immunoprecipitation (ChIP) assay was performed with anti-ac-H3 antibody. Direct interaction between miR-92a-3p and its putative binding site in the 3'-untranslated region (3'-UTR) of HDAC2 mRNA was confirmed by luciferase reporter assay. Results: miR-92a-3p expression was elevated in chondrogenic and hypertrophic hMSC, while reduced in OA cartilage compared with normal cartilage. The overexpression of miR-92a-3p suppressed the activity of a reporter construct containing the 3'-UTR and inhibited HDAC2 expression in both hMSCs and PHCs, while treatment with anti-miR-92a-3p enhanced HDAC2 expression. ChIP assays showed that miR-92a-3p enhances H3 acetylation on aggrecan (ACAN), cartilage oligomeric protein (COMP) and Col2a1 promoter, and also promotes relative cartilage matrix expression. Conclusion: Our results suggest that miR-92a-3p regulates cartilage development and homeostasis, which directly targets HDAC2, indicating histone hyperacetylation plays an important role in increased expression of cartilage matrix. (C) 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据