4.8 Article

Light trapping in bendable organic solar cells using silica nanoparticle arrays

期刊

ENERGY & ENVIRONMENTAL SCIENCE
卷 8, 期 3, 页码 932-940

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee01100g

关键词

-

资金

  1. Korea Institute of Materials Science (KIMS)

向作者/读者索取更多资源

A highly efficient light-scattering layer, composed of quasi-periodic discrete silica nanoparticles directly deposited onto polymer substrates to produce bendable organic solar cells (OSCs) with enhanced light absorption, is reported. A silica nanoparticle layer (SNL) underwent self-assembly on a highly flexible and heat-sensitive polymer at room temperature during fabrication, which employed a unique plasma-enhanced chemical vapour deposition technique. Such efficient light-scattering SNLs have not been realizable by conventional solution-based coating techniques. SNLs were optimized by precisely controlling dimensional parameters, specifically, the nanoparticle layer thickness and interparticle distance. The optimized SNL exhibited an improved transmission haze of 16.8% in the spectral range of 350-700 nm, where reduction of the total transmission was suppressed to 2%. Coating light-scattering SNLs onto polymer substrates is a promising method for improving the light harvesting abilities of OSCs by enhancing the light absorption of photoactive polymer layers. This SNL-based flexible OSC exhibited a record power conversion efficiency (PCE) of 7.4%, representing a 13% improvement, while reducing the thickness of the photoactive polymer layer by 30%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据