4.7 Article

Modular and programmable material systems drawing from the architecture of skeletal muscle

期刊

PHYSICAL REVIEW E
卷 98, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.043001

关键词

-

资金

  1. U.S. Army Research Office [W911NF-15-1-0114]

向作者/读者索取更多资源

The passive attributes of skeletal muscle material often have origins in nanoscale architecture and functionality where geometric frustrations directly influence macroscale mechanical properties. Drawing from concepts of the actomyosin network, this study investigates a modular, architected material system that leverages spatial constraints to generate multiple stable material topologies and to yield large adaptability of material mechanical properties. By exploiting the shearing actions induced on an actomyosin-inspired assembly of modular material constituents, intriguing material behaviors are cultivated, including strong metastability and energy-releasing state transitions. Experimental, numerical, and analytical studies reveal that such passive attributes can be tailored by geometric constraints imposed on the modular material system. The geometric parameters can also introduce a bias to the deformations, enabling a programmable response. By invoking the spatial constraints and oblique, shearlike motions inherent to skeletal muscle architecture, this research uncovers potential for architected material systems that exploit locally tunable properties to achieve targeted macroscopic behaviors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据