4.4 Article

Parametric Instability and Localization of Vibrations in Three-Blade Wind Turbines

出版社

ASME
DOI: 10.1115/1.4039899

关键词

wind turbine; blade; nonlinear vibration; parametric instability; localization; frequency response curve; basin of attraction

向作者/读者索取更多资源

Nonlinear vibration characteristics of three-blade wind turbines are theoretically investigated. The wind turbine is modeled as a coupled system, consisting of a flexible tower with two degrees-of-freedom (2DOF), and three blades, each with a single degree of freedom (SDOF). The blades are subjected to steady winds. The wind velocity increases proportionally with height due to vertical wind shear. The natural frequency diagram is calculated with respect to the rotational speed of the wind turbine. The corresponding linear system with parametric excitation terms is analyzed to determine the rotational speeds where unstable vibrations appear and to predict at what rotational speeds the blades may vibrate at high amplitudes in a real wind turbine. The frequency response curves are then obtained by applying the swept-sine test to the equations of motion for the nonlinear system. They exhibit softening behavior due to the nonlinear restoring moments acting on the blades. Stationary time histories and their fast Fourier transform (FFT) results are also calculated. In the numerical simulations, localization phenomena are observed, where the three blades vibrate at different amplitudes. Basins of attraction (BOAs) are also calculated to examine the influence of a disturbance on the appearance of localization phenomena.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据