4.6 Article

High-affinity recognition of the human C-reactive protein independent of phosphocholine

期刊

ORGANIC & BIOMOLECULAR CHEMISTRY
卷 15, 期 21, 页码 4644-4654

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ob00684e

关键词

-

资金

  1. Swedish Research Council [2014-4057]

向作者/读者索取更多资源

A high-affinity polypeptide conjugate 4-C25L22-DQ, has been developed for the molecular recognition of the human C-reactive protein, CRP, a well-known inflammation biomarker. CRP is one of the most frequently quantified targets in diagnostic applications and a target in drug development. With the exception of antibodies, most molecular constructs take advantage of the known affinity for CRP of phosphocholine that depends on Ca2+ for its ability to bind. 4-C25L22-DQ which is unrelated to phosphocholine binds in the absence of Ca2+ with a dissociation constant of 760 nM, an order of magnitude lower than that of phosphocholine, the KD of which is 5 mu M. The small organic molecule 2-oxo-1,2-dihydroquinoline-8-carboxylic acid (DQ) was designed based on the structural similarities between three hits from a set of compounds selected from a building block collection and evaluated with regards to affinity for CRP by NMR spectroscopy. 4-C25L22-DQ was shown in a competition experiment to bind CRP three orders of magnitude more strongly than DQ itself, and in a pull-down experiment 4-C25L22-DQ was shown to extract CRP from human serum. The development of a robust and phosphocholine-independent recognition element provides unprecedented opportunities in bioanalytical applications in vivo and in vitro under conditions where the concentration of Ca2+ ions is low, or where Ca2+ binding agents such as EDTA or heparin are needed to prevent blood coagulation. The identification from a compound library of a small organic molecule and its conjugation to a small set of polypeptides, none of which were previously known to bind CRP, illustrates a convenient and general route to selective high-affinity binders for proteins with dissociation constants in the mu M to nM range for which no small molecule ligands are known.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据