4.7 Article

Entropy analysis for magnetohydrodynamic flow and heat transfer of a Jeffrey nanofluid over a stretching sheet

期刊

ENERGY
卷 79, 期 -, 页码 351-362

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2014.11.021

关键词

Laminar MHD flow; non-Newtonian nanofluid; Forced convection; Entropy generation

向作者/读者索取更多资源

Entropy generation for steady laminar two-dimensional forced convection magnetohydrodynamic (MHD) boundary layer flow, heat transfer and mass transfer of an incompressible non-Newtonian nanofluid over a linearly stretching, impermeable and isothermal sheet with viscous dissipation is numerically studied. The nanofluid model is considered by using the Brownian motion and thermophoresis effects. The Jeffrey model is used to denote the non-Newtonian fluid. The boundary layer continuity, momentum, energy, and concentration equations are transformed by using appropriate similarity transformations to three nonlinear coupled ordinary differential equations (ODEs). Then, the ODEs are solved by applying an implicit Keller's box numerical algorithm. The influence of various controlling parameters including ratio of relaxation to retardation times, Deborah number, Eckert number, Brownian motion parameter, thermophoresis parameter, and Lewis number on flow, heat transfer, mass transfer, and entropy generation characteristics is examined and discussed. Graphical presentation of the numerical examination is performed to illustrate the influence of various parameters on velocity, temperature, nanoparticles volume fraction, and entropy generation number profiles. The results reveal that the entropy generation number strongly varies by variations in Reynolds number, Prandtl number, Lewis number, and thermophoresis parameter. A comparative study of our numerical results with the results from previous works is also performed which shows excellent agreement. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据