4.7 Article

Downhole physical property logging for iron-oxide exploration, rock quality, and mining: An example from central Sweden

期刊

ORE GEOLOGY REVIEWS
卷 90, 期 -, 页码 1-13

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.oregeorev.2017.10.012

关键词

Downhole physical property logging; Iron oxide deposits; Elastic constants; Seismic quality factor; Sweden

资金

  1. Vinnova [2014-06238]
  2. Geological Survey of Sweden
  3. Yara
  4. Tekes
  5. Uppsala University
  6. Nordic Iron Ore AB (NIO)

向作者/读者索取更多资源

Several physical properties obtained from geophysical logging and laboratory measurements were analyzed in order to characterize iron-oxide mineralization and host rocks in the Blotberget mining area of central Sweden. Seven boreholes intersecting the mineralization between 300 and 600 m depth in a volcano-sedimentary setting were downhole logged for this purpose. The downhole logging included full-waveform triple sonic, natural gamma, magnetic susceptibility, formation resistivity, fluid temperature and conductivity while laboratory measurements consisted of density, rock quality designation and magnetite content measurements. Full-waveform sonic data were used for rock quality assessments of the mineralized zones and their host rocks and proved their potential to be used for mine planning purposes. The ore-bearing rocks are primarily distinguished by increased density and dynamic elastic moduli estimated from the full-waveform sonic logging. Although seismic velocities do not follow a linear increase with the density for the mineralized rocks, as expected for igneous rocks, it is observed that a strong seismic signal from the mineralization can be expected primarily due to their high density. In addition, the full-waveform sonic data could be used as a proxy for fracture delineations and in situ rock quality assessment. For example, zones of washed-up amplitudes in these data correlate well with zones of poor quality rocks, identified by core logging. Based on the full-waveform sonic data, seismic attenuation and its reciprocal, the seismic quality factor, were calculated. A decrease in the seismic quality factor was observed at zones with low rock quality designation, but also correlated with the mineralized zones suggesting several fracture zones in the mineralization and that the ore-bearing rocks might be less competent than the surrounding host rocks. Eventual rock support and reinforcement might be required for future mining operations. Full-waveform sonic data have the potential to improve rock quality assessments for mine planning and exploration purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据