4.7 Article

Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers

期刊

ORE GEOLOGY REVIEWS
卷 85, 期 -, 页码 64-106

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.oregeorev.2016.09.012

关键词

VMS deposits; The Urals; Chimneys; Black smokers; LA-ICP-MS; Mineral zonality and assemblages

资金

  1. Russian Foundation for Basic Research [14-05-00630]
  2. ARC Centre of Excellence grant
  3. Russian Science Foundation [14-17-00691]
  4. Russian Science Foundation [14-17-00691] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

In the Urals, a wide range of well-preserved chimneys are found in VMS deposits, which are associated with ultramafic (Atlantic type: Dergamysh), mafic (Cyprus type: Buribay), bimodal mafic (Uralian type: Yubileynoye, Sultanovskoye, Yaman-Kasy, Molodezhnoye, Uzelga-4, Valentorskoye) and bimodal felsic (Kuroko or Baymak type: Oktyabrskoye, Tash-Tau, Uselga-1, Talgan, Alexandrinskoye) sequences. Chimneys have also been found in the Safyanovskoye deposit (Altay type) that is hosted by intercalated felsic lavas and carbonaceous shales. A combination of geological, mineralogical and trace element data provide a general outline for comparison between chimneys from the Urals deposits and modern vent sites. The chimneys from the Dergamysh deposit show a broad affinity with those from the Rainbow and other vent sites associated with serpentinites of the Mid-Atlantic Ridge. The chimneys from the Buribay deposit are similar to the black smokers of the EPR vent sites including the scarcity of rare minerals. The chimneys from the Urals type of the VMS deposits show some similarities with grey smokers from the Brother Volcano and PACMANUS sites. The chimneys from the Baymak type of the VMS deposits resemble grey and white smokers of the PACMANUS and grey smokers of the Suiyo vent sites. The chimneys from the Safyanovskoye deposit are similar to the black and clear smokers from the Okinawa Trough. Mineral assemblages are controlled by the combination of host rock composition and physicochemical conditions of the ore-forming processes. Amount of colloform pyrite, isocubanite and pseudomorphic pyrite and marcasite after pyrrhotite decreases in the chimneys across the range from ultramafic and mafic to felsic-hosted deposits and is concomitant with increase in the contents of sphalerite, galena, bornite, fahlores, native gold and barite across this range. The chimneys from the Urals type contain abundant tellurides and sulfoarsenides, while these minerals are rare (except for hessite) in the Baymak type deposits. In the same range, the buffering capacity of host rocks decreases in contrast to the increase in fS(2) and fO(2). With the exception of the Safyanovskoye deposit, trace element assemblages in chalcopyrite vary to reflect the host rock: ultramafic (high Se, Sn, Co, Ni, Ag and Au) -> mafic (high Co, Se, Mo and low Bi, Au and Pb) -> bimodal mafic (high Te, Au, Ag, Bi, Pb, Co, moderate Se, and variable As and Sb) -> bimodal felsic (high As, Sb, Mo, Pb, moderate Bi, and low Co, Te and Se). In sphalerite of the same range, the contents of Bi, Pb, Ag, Au and Sb increase versus Fe, Se and Co. The variations in trace elements in colloform pyrite coincide with these changes. The specific mineral changes in the local ranges from Cu- to Zn-rich chimneys in each VMS deposit are similar to the general changes in the range of host rock classes of the deposits. However, the local T,fS(2) and fO(2) changes can broadly be interpreted in terms of contribution of variable oxygenated cold seawater to the subseafloor and seafloor hydrothermal processes. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据