3.8 Proceedings Paper

Gravity, antimatter and the Dirac-Milne universe

期刊

HYPERFINE INTERACTIONS
卷 239, 期 -, 页码 -

出版社

SPRINGER INT PUBL AG
DOI: 10.1007/s10751-018-1521-3

关键词

Antimatter; Gravity; Cosmology; Dark energy; Equivalence principle

向作者/读者索取更多资源

We review the main arguments against antigravity, a different acceleration of antimatter relative to matter in a gravitational field, discussing and challenging Morrison's, Good's and Schiff's arguments. Following Price, we show that, very surprisingly, the usual expression of the Equivalence Principle is violated by General Relativity when particles of negative mass are supposed to exist, which may provide a fundamental explanation of MOND phenomenology, obviating the need for Dark Matter. Motivated by the observation of repulsive gravity under the form of Dark Energy, and by the fact that our universe looks very similar to a coasting (neither decelerating nor accelerating) universe, we study the Dirac-Milne cosmology, a symmetric matter-antimatter cosmology where antiparticles have the same gravitational properties as holes in a semiconductor. Noting the similarities with our universe (age, SN1a luminosity distance, nucleosynthesis, CMB angular scale), we focus our attention on structure formation mechanisms, finding strong similarities with our universe. Additional tests of the Dirac-Milne cosmology are briefly reviewed, and we finally note that a crucial test of the Dirac-Milne cosmology will be soon realized at CERN next to the ELENA antiproton decelerator, possibly as early as fall 2018, with the AEgIS, ALPHA-g and Gbar antihydrogen gravity experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据