4.6 Article

Electrical manipulation of semiconductor spin qubits within the g-matrix formalism

期刊

PHYSICAL REVIEW B
卷 98, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.155319

关键词

-

资金

  1. European Union's Horizon 2020 research and innovation program [688539 MOSQUITO]

向作者/读者索取更多资源

We discuss the modeling of the electrical manipulation of spin qubits in the linear-response regime where the Rabi frequency is proportional to the magnetic field and to the radio-frequency electric field excitation. We show that the Rabi frequency can be obtained from a generalized g-tensor magnetic resonance formula featuring a g matrix and its derivative g' with respect to the electric field (or gate voltage) as inputs. These matrices can be easily calculated from the wave functions of the qubit at zero magnetic field. The g-matrix formalism therefore provides the complete dependence of the Larmor and Rabi frequencies on the orientation of the magnetic field at very low computational cost. It also provides a compact model for the control of the qubit and a simple framework for the analysis of the effects of symmetries on the anisotropy of the Larmor and Rabi frequencies. The g-matrix formalism applies to a wide variety of electron and hole qubits, and we focus on a hole qubit in a silicon-on-insulator nanowire as an illustration. We show that the Rabi frequency of this qubit shows a complex dependence on the orientation of the magnetic field and on the gate voltages that control the symmetry of the hole wave functions. We point out that the qubit may be advantageously switched between two bias points, one where it can be manipulated efficiently, and one where it is largely decoupled from the gate field but presumably longer lived. We also discuss the role of residual strains in such devices in relation to recent experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据