4.6 Article

High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure

期刊

OPTICS LETTERS
卷 42, 期 14, 页码 2766-2769

出版社

OPTICAL SOC AMER
DOI: 10.1364/OL.42.002766

关键词

-

类别

资金

  1. National Natural Science Foundation of China (NSFC) [61371044, 61401122, 61571155]
  2. Open Project of State Key Laboratory of Millimeter Waves [K201828]

向作者/读者索取更多资源

A complementary structure based on coplanar waveguides (CPWs) with periodical etching slots is proposed to support spoof surface plasmon polaritons (SSPPs). In contrast to the traditional slotline-based complementary SSPP structure, a dispersion curve of the second mode by the proposed structure has a much lower starting point from the origin which exhibits greatly improved operating bandwidth. Moreover, tighter confinements of SSPPs in the region of small wave vectors corresponding to lower frequencies can be predicted from the dispersion analysis, which means enhancement of transmission efficiency. Then a simple and efficient transition structure with tapered CPWs and gradient slots is proposed to realize high-efficiency and broadband excitation of the second mode of SSPPs for the first time, to the best of our knowledge. Based on the proposed structure, a seamless connection between CPWs and the SSPP structure can be achieved. The measured insertion loss and return loss below 6.6 GHz is better than -0.86 and -13.62 dB, respectively. Furthermore, it can be seen from the measurement results that a 3 dB bandwidth ranges from 0 to 10.57 GHz, and the return loss is better than -10 dB from 0 to 8.96 GHz. The proposed structure can promote the development of plasmonic integrate circuits and functional devices at microwave frequencies. (C) 2017 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据