4.6 Article

Resolution enhancement in in-line holography by numerical compensation of vibrations

期刊

OPTICS EXPRESS
卷 25, 期 17, 页码 20109-20124

出版社

OPTICAL SOC AMER
DOI: 10.1364/OE.25.020109

关键词

-

类别

向作者/读者索取更多资源

Mechanical vibrations of components of the optical system is one of the sources of blurring of interference pattern in coherent imaging systems. The problem is especially important in holography where the resolution of the reconstructed objects depends on the effective size of the hologram, which is on the extent of the interference pattern, and on the contrast of the interference fringes. We discuss the mathematical relation between the vibrations, the hologram contrast and the reconstructed object. We show how vibrations can be post-filtered out from the hologram or from the reconstructed object assuming a Gaussian distribution of the vibrations. We also provide a numerical example of compensation for directional motion blur. We demonstrate our approach for light optical and electron holograms, acquired with both, plane-as well as spherical-waves. As a result of such hologram deblurring, the resolution of the reconstructed objects is enhanced by almost a factor of 2. We believe that our approach opens up a new venue of post-experimental resolution enhancement in in-line holography by adapting the rich database/catalogue of motion deblurring algorithms developed for photography and image restoration applications. (C) 2017 Optical Society of America

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据