3.8 Article

Magnetotransport Study on Iron Doped Novel 2D Nanoribbons via Electron - Acoustical Phonon Interactions

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0219581X18500102

关键词

Graphene nanoribbon; boron nitride nanoribbon; hot electron magnetotransport parameters; electronic resistivity; electron energy loss rate

资金

  1. SERB Government of India

向作者/读者索取更多资源

The electron transport parameters such as electron energy relaxation rate and phonon limited electron resistivity for iron (transition metal) doped 2D nanoribbons of armchair graphene nanoribbon (aGNR) and h-boron nitride nanoribbon (h-BNNR) have been calculated via hot electron acoustical phonon interactions on the basis of acoustical deformation potential (ADP) coupling mechanism. We have performed the investigation for the lower concentration (x = 1%) of iron doping under the influence of externally applied magnetic field at low temperature to room temperature regime. The hot electron acoustical phonon relaxation rates are observed with electric field and under constant applied magnetic field. The doping of iron increases the electron energy relaxation rate with respect to their pristine counter parts. Moreover, the pristine h-BNNR exhibits less electron energy relaxation rate with respect to pristine aGNR. Upon applying magnetic field on Fe doped armchair GNR as well as Fe-doped h-BNNR the electron energy relaxation rate reduces down to a considerable extent with respect to their pristine counterparts. Moreover, under the impact of magnetic field, the acoustical phonon restricted electrical resistivity of Fe-doped GNR is considerably low compared to pristine GNR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据