4.7 Article

Whole-field thickness strain measurement using multiple camera digital image correlation system

期刊

OPTICS AND LASERS IN ENGINEERING
卷 90, 期 -, 页码 19-25

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.optlaseng.2016.09.012

关键词

Digital image correlation; Thickness strain; Multi-camera DIC; 3D strain; Thinning strain limit

类别

向作者/读者索取更多资源

Three Dimensional digital image correlation(3D-DIC) has been widely used by industry, especially for strain measurement. The traditional 3D-DIC system can accurately obtain the whole-field 3D deformation. However, the conventional 3D-DIC system can only acquire the displacement field on a single surface, thus lacking information in the depth direction. Therefore, the strain in the thickness direction cannot be measured. In recent years, multiple camera DIC (multi-camera DIC) systems have become a new research topic, which provides much more measurement possibility compared to the conventional 3D-DIC system. In this paper, a multi-camera DIC system used to measure the whole-field thickness strain is introduced in detail. Four cameras are used in the system. two of them are placed at the front side of the object, and the other two cameras are placed at the back side. Each pair of cameras constitutes a sub stereo-vision system and measures the whole field 3D deformation on one side of the object. A special calibration plate is used to calibrate the system, and the information from these two subsystems is linked by the calibration result. Whole-field thickness strain can be measured using the information obtained from both sides of the object. Additionally, the major and minor strain on the object surface are obtained simultaneously, and a whole-field quasi 3D strain history is acquired. The theory derivation for the system, experimental process, and application of determining the thinning strain limit based on the obtained whole-field thickness strain history are introduced in detail.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据