4.5 Article

Serial Inventory Systems with Markov-Modulated Demand: Derivative Bounds, Asymptotic Analysis, and Insights

期刊

OPERATIONS RESEARCH
卷 65, 期 5, 页码 1231-1249

出版社

INFORMS
DOI: 10.1287/opre.2017.1615

关键词

multiechelon inventory systems; Markov-modulated demand; derivative; asymptotic analysis

资金

  1. Natural Science Foundation of China [71390331]

向作者/读者索取更多资源

We study Inventory control of serial supply chains with continuous, Markov-modulated demand (MMD). Our goal is to simplify the computational complexity by resorting to certain approximation techniques, and, in doing so, to gain a deeper understanding of the problem. First, we perform a derivative analysis of the problem's optimality equations and develop general, analytical solution bounds for the optimal policy. This leads to simple-to-compute near-optimal heuristic solutions, which also reveal an intuitive relationship with the primitive model parameters. Second, we establish an MMD central limit theorem under long replenishment lead time through asymptotic analysis. We show that the relative errors between our heuristic and the optimal solutions converge to zero as the lead time becomes sufficiently long, with the rate of convergence being the square root of the lead time. Third, we show that, by leveraging the Laplace transform, the computational complexity of our heuristic is superior to the existing methods. Finally, we provide the first set of numerical study for serial systems under MMD. The numerical results demonstrate that our heuristic achieves near-optimal performance even under short lead times and outperforms alternative heuristics in the literature. In addition, we observe that, in an optimally run supply chain under MMD, the internal fill rate can be high and the demand variability propagating upstream can be dampened, both different from the system behaviors under stationary demand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据