4.7 Article

Quantifying the validity and breakdown of the overdamped approximation in stochastic thermodynamics: Theory and experiment

期刊

PHYSICAL REVIEW E
卷 98, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.052105

关键词

-

资金

  1. National Science Foundation of China [11775001, 11534002]
  2. Recruitment Program of Global Youth Experts of China
  3. National Science Foundation [1555035-PHY]
  4. Office of Naval Research [N00014-18-1-2371]

向作者/读者索取更多资源

Stochastic thermodynamics provides an important framework to explore small physical systems where thermal fluctuations are inevitable. In the studies of stochastic thermodynamics, some thermodynamic quantities, such as the trajectory work, associated with the complete Langevin equation (the Kramers equation) are often assumed to converge to those associated with the overdamped Langevin equation (the Smoluchowski equation) in the overdamped limit under the overdamped approximation. Nevertheless, a rigorous mathematical proof of the convergence of the work distributions to our knowledge has not been reported so far. Here we study the convergence of the work distributions explicitly. In the overdamped limit, we rigorously prove the convergence of the extended Fokker-Planck equations including work using a multiple timescale expansion approach. By taking the linearly dragged harmonic oscillator as an exactly solvable example, we analytically calculate the work distribution associated with the Kramers equation, and verify its convergence to that associated with the Smoluchowski equation in the overdamped limit. We quantify the accuracy of the overdamped approximation as a function of the damping coefficient. In addition, we experimentally demonstrate that the data of the work distribution of a levitated silica nanosphere agrees with the overdamped approximation in the overdamped limit, but deviates from the overdamped approximation in the low-damping case. Our work fills a gap between the stochastic thermodynamics based on the complete Langevin equation (the Kramers equation) and the overdamped Langevin equation (the Smoluchowski equation), and deepens our understanding of the overdamped approximation in stochastic thermodynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据