4.4 Article

Electroanatomical Remodeling of the Atria in Obesity Impact of Adjacent Epicardial Fat

期刊

JACC-CLINICAL ELECTROPHYSIOLOGY
卷 4, 期 12, 页码 1529-1540

出版社

ELSEVIER
DOI: 10.1016/j.jacep.2018.08.014

关键词

adipose tissue; atrial fibrillation; epicardial fat; obesity; pericardial fat; remodeling

资金

  1. Centre of Heart Rhythm Disorders at the University of Adelaide

向作者/读者索取更多资源

OBJECTIVES The aims of the study were to characterize: 1) electrical and electroanatomical remodeling in patients with atrial fibrillation (AF) with obesity; and 2) the impact of epicardial fat depots on adjacent atrial tissue. BACKGROUND Obesity is associated with an increased risk of AF. METHODS A total of 115 patients with AF who underwent AF ablation were screened. After exclusion, 26 patients were divided into 2 groups (obese: body mass index [BMI] >= 27 kg/m(2) and reference: BMI <27 kg/m(2)). They underwent cardiac magnetic resonance (CMR) imaging and electroanatomic mapping of the left atrium (LA) in sinus rhythm before AF ablation. Atrial and ventricular epicardial adipose tissue (EAT) were assessed by CMR. The following electrophysiological parameters were assessed: global and regional voltage, conduction velocity (CV), electrogram fractionation, and CV heterogeneity. In addition, the regional relationship between LA EAT depots and the electrophysiological substrate was evaluated. RESULTS The BMIs of the obese and reference groups were 30.2 +/- 2.6 and 25.2 +/- 1.3 kg/m(2), respectively (p < 0.001). There was no difference in the left ventricular ejection fraction and a nonsignificant increase in LA size with obesity. Obesity was associated with increase in all measures of EAT (p < 0.05), with a predominant distribution adjacent to the posterior LA and the atrioventricular groove. Obesity was associated with reduced global CV (0.86 +/- 0.31 m/s vs. 1.26 +/- 0.29 m/s; p < 0.001), with a nonsignificant increase in conduction heterogeneity (p = 0.10), increased fractionation (54 +/- 17% vs. 25 +/- 10%; p < 0.001), and regional alteration in voltage (p < 0.001). Although the global LA voltage was preserved, there was greater voltage heterogeneity (p = 0.001) and increased low-voltage areas (13.9% vs. 3.4%; p < 0.001) in the obese group compared with the reference group. The low voltage areas were predominantly seen in the posterior and/or inferior LA, which was similar to location of EAT on CMR imaging. Among various measures of obesity, LA EAT volume correlated best with posterior LA fractionation (r(2) = 0.55 for LA EAT volume vs. r(2) = 0.36 for BMI) and CV (r(2) = 0.31 for LA EAT volume vs. r(2) = 0.22 for BMI). CONCLUSIONS Obesity is associated with electroanatomical remodeling of the atria, with areas of low voltage, conduction slowing, and greater fractionation of electrograms. These changes were more pronounced in regions adjacent to epicardial fat depots, which suggested a role for fat depots in the development of the AF substrate. Crown Copyright (C) 2018 Published by Elsevier on behalf of the American College of Cardiology Foundation. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据