4.4 Article

Numerical investigation of transport phenomena in high temperature proton exchange membrane fuel cells with different flow field designs

期刊

NUMERICAL HEAT TRANSFER PART A-APPLICATIONS
卷 72, 期 11, 页码 807-820

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10407782.2017.1412221

关键词

-

资金

  1. China Scholarship Council (CSC)

向作者/读者索取更多资源

In this work, a three-dimensional, non-isothermal, steady-state model for high temperature proton exchange membrane fuel cells with phosphoric acid polybenzimidazole membrane has been developed using computational fluid dynamics. The importance of the gas flow field design on the transport characteristics and cell performance is revealed by solving the mass, momentum, species, energy, and charge conservation equations. The numerical results show that the best cell performance is provided by the fuel cell with serpentine flow channel flow field. However, the pressure drop is also very high due to the large length of the serpentine channel. In addition, the velocity, oxygen mass fraction, and temperature distributions are unevenly distributed over the entire active area of the fuel cell having straight channels with small manifolds, especially at low cell voltages when a large amount of oxygen is required. The cell performance and durability can be significantly affected by the uniformity of the reactants within the fuel cell. It is suggested that the flow field configurations must be optimized to obtain uniform distributions of the reactants, maximize the cell performance, and minimize the pressure drop penalty. The present results provide detailed information about transport characteristics within fuel cells and give guidelines for design and manufacturing of current collectors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据