4.8 Article

The PhytoClust tool for metabolic gene clusters discovery in plant genomes

期刊

NUCLEIC ACIDS RESEARCH
卷 45, 期 12, 页码 7049-7063

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkx404

关键词

-

资金

  1. Deans of Life Sciences Postdoctoral fellowship
  2. Alternative Energy Research Initiative (AERI) of the Weizmann Institute
  3. Alternative Energy Research Initiative (AERI), Weizmann Institute of Science

向作者/读者索取更多资源

The existence of Metabolic Gene Clusters (MGCs) in plant genomes has recently raised increased interest. Thus far, MGCs were commonly identified for pathways of specialized metabolism, mostly those associated with terpene type products. For efficient identification of novel MGCs, computational approaches are essential. Here, we present PhytoClust; a tool for the detection of candidate MGCs in plant genomes. The algorithm employs a collection of enzyme families related to plant specialized metabolism, translated into hidden Markov models, to mine given genome sequences for physically co-localized metabolic enzymes. Our tool accurately identifies previously characterized plant MGCs. An exhaustive search of 31 plant genomes detected 1232 and 5531 putative gene cluster types and candidates, respectively. Clustering analysis of putative MGCs types by species reflected plant taxonomy. Furthermore, enrichment analysis revealed taxa-and species-specific enrichment of certain enzyme families in MGCs. When operating through our web-interface, PhytoClust users can mine a genome either based on a list of known cluster types or by defining new cluster rules. Moreover, for selected plant species, the output can be complemented by co-expression analysis. Altogether, we envisage PhytoClust to enhance novel MGCs discovery which will in turn impact the exploration of plant metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据