4.6 Article

Highly directional photon superbunching from a few-atom chain of emitters

期刊

PHYSICAL REVIEW A
卷 98, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.98.063824

关键词

-

向作者/读者索取更多资源

We examine angular distribution of the probability of correlated fluorescence photon emission from a linear chain of identical equidistant two-level atoms. We selectively excite one of the atoms by a resonant laser field. The atoms are coupled to each other via the dipole-dipole interaction and collective spontaneous emission. Our attention is focused on the simultaneous observation of correlated pairs of photons. It is found that the interference between the emitting atoms can result in a highly directional emission of photon pairs. These pairs of photons exhibit strong correlations and their emission is highly concentrated into specific directions. We demonstrate the crucial role of the selective coherent excitation in such a geometrical configuration. Shifting the driving field from an atom located at one end of the chain to the other causes the radiation pattern to flip to the opposite half of the detection plane. Furthermore, we find that atomic systems in which only an atom situated at a particular position within the linear chain is driven by a laser field can radiate correlated twin photons in directions along which the radiation of single photons is significantly reduced. Alternatively, superbunching in the emitted photon statistics preferentially occurs in directions of negligible or vanishing single-photon emission. The effect of superbunching strengthens as more emitters are added to the chain. Depending on the number of atoms and the position of the driven atom within the chain, the strongly correlated pairs of photons can be emitted into few well-defined directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据