4.7 Article

Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk

期刊

JCI INSIGHT
卷 3, 期 4, 页码 -

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/jci.insight.98045

关键词

-

资金

  1. NIH [R01HL095964]
  2. National Center for Advancing Translational Science [8UL1TR0001750]
  3. Danish Research Council
  4. Danish Cancer Society
  5. Young Elite Research Award from the Danish Council of Independent Research, Ministry of Higher Education Science
  6. German Research Foundation (Deutsche Forschungsgemeinschaft) [KO 5187/1-1]

向作者/读者索取更多资源

BACKGROUND. Subspecies of HDL contain apolipoprotein E (apoE) and/or apoCIII. Both proteins have properties that could affect HDL metabolism. The relation between HDL metabolism and risk of coronary heart disease (CHD) is not well understood. METHODS. Eighteen participants were given a bolus infusion of [D3] L-leucine to label endogenous proteins on HDL. HDL was separated into subspecies containing apoE and/or apoCIII and then into 4 sizes. Metabolic rates for apoA-I in HDL subspecies and sizes were determined by interactive modeling. The concentrations of apoE in HDL that contain or lack apoCIII were measured in a prospective study in Denmark including 1,949 incident CHD cases during 9 years. RESULTS. HDL containing apoE but not apoCIII is disproportionately secreted into the circulation, actively expands while circulating, and is quickly cleared. These are key metabolic steps in reverse cholesterol transport, which may protect against atherosclerosis. ApoCIII on HDL strongly attenuates these metabolic actions of HDL apoE. In the epidemiological study, the relation between HDL apoE concentration and CHD significantly differed depending on whether apoCIII was present. HDL apoE was associated significantly with lower risk of CHD only in the HDL subspecies lacking apoCIII. CONCLUSIONS. ApoE and apoCIII on HDL interact to affect metabolism and CHD. ApoE promotes metabolic steps in reverse cholesterol transport and is associated with lower risk of CHD. ApoCIII, when coexisting with apoE on HDL, abolishes these benefits. Therefore, differences in metabolism of HDL subspecies pertaining to reverse cholesterol transport are reflected in differences in association with CHD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据