4.7 Article

The effect of blade vibration on the nonlinear characteristics of rotor-bearing system supported by nonlinear suspension

期刊

NONLINEAR DYNAMICS
卷 89, 期 2, 页码 987-1010

出版社

SPRINGER
DOI: 10.1007/s11071-017-3496-z

关键词

Nonlinear characteristics; Blade-rotor-bearing system; Bifurcation; Continuum model

资金

  1. China Natural Science Funds [51575093]
  2. Natural Science Funds of Liaoning Province [2015020153]

向作者/读者索取更多资源

The influence of blade vibration on the nonlinear characteristics of rotor-bearing system is non-ignorable in estimating system performance. The extensive studies simplify the rotor system as lumped mass points. The influence of shaft's bending and shear and the flexibility are usually ignored. The present paper is aim to analyze the nonlinear dynamic behavior of a continuum model. The continuum model of flexible blade-rotor-bearing coupling system is established, simplifying the shaft as Timoshenko beam. The Lagrange method is utilized to derive the differential equation of motion of system. Then, the nonlinear equations of coupling system are numerically solved using the Newmark- method. The results obtained through the proposed model are compared with the rotor-bearing system without the blades. The effect of several parameters such as rotational speed, the damping coefficient and the length of blade on the nonlinear dynamics of rotor system have been investigated. Inclusive of the analysis methods of bifurcation diagram, three-dimensional spectral plots, time-base analysis, Poincare maps and spectral plots are used to analyze the behavior of the coupling system under different operating conditions, which exhibits rich dynamic behavior of the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据