4.1 Article

An In Vitro Model for the Development of Mature Bone Containing an Osteocyte Network

期刊

ADVANCED BIOSYSTEMS
卷 2, 期 2, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adbi.201700156

关键词

animal models reduction; biomaterials; bone; osteocytes; self-organization

资金

  1. National Centre for the Replacement Refinement and Reduction of animals in research (NC3Rs) grant [NC/L001403/1]
  2. National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) [NC/L001403/1] Funding Source: researchfish

向作者/读者索取更多资源

Bone is a dynamic tissue that remodels continuously in response to local mechanical and chemical stimuli. This process can also result in maladaptive ectopic bone in response to injury, yet pathological differences at the molecular and structural levels are poorly understood. A number of in vivo models exist but can often be too complex to allow isolation of factors which may stimulate disease progression. A self-structuring model of bone formation is presented using a fibrin gel cast between two calcium phosphate ceramic anchors. Femoral periosteal cells, seeded into these structures, deposit an ordered matrix that closely resembles mature bone in terms of chemistry (collagen:mineral ratio) and structure, which is adapted over a period of one year in culture. Raman spectroscopy and X-ray diffraction confirm that the mineral is hydroxyapatite associated with collagen. Second-harmonic imaging demonstrates that collagen is organized similarly to mature mouse femora. Remarkably, cells differentiated to the osteocyte phase are linked by canaliculi (as demonstrated with nano-computed tomography) and remained viable over the full year of culture. It is demonstrated that novel drugs can prevent ossification in constructs. This model can be employed to study bone formation in an effort to encourage or prevent ossification in a range of pathologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据