4.6 Article

A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize

期刊

NEW PHYTOLOGIST
卷 215, 期 4, 页码 1503-1515

出版社

WILEY
DOI: 10.1111/nph.14688

关键词

CACTA-like transposon; epigenetics; maize; quantitative resistance; stalk rot

资金

  1. National Key Research and Development Program of China [2016YFD0101002]
  2. Ministry of Agriculture of China [2016ZX08009-003-001]

向作者/读者索取更多资源

A major resistance quantitative trait locus, qRfg1, significantly enhances maize resistance to Gibberella stalk rot, a devastating disease caused by Fusarium graminearum. However, the underlying molecular mechanism remains unknown. We adopted a map-basedcloning approach to identify the resistance gene at qRfg1 and examined the dynamic epigenetic changes during qRfg1-mediated maize resistance to the disease. A CCT domain-containing gene, ZmCCT, is the causal gene at the qRfg1 locus and a polymorphic CACTA-like transposable element (TE1) c. 2.4 kb upstream of ZmCCT is the genetic determinant of allelic variation. The non-TE1 ZmCCT allele is in a poised state, with predictive bivalent chromatin enriched for both repressive (H3K27me3/H3K9me3) and active (H3K4me3) histone marks. Upon pathogen challenge, this non-TE1 ZmCCT allele was promptly induced by a rapid yet transient reduction in H3K27me3/H3K9me3 and a progressive decrease in H3K4me3, leading to disease resistance. However, TE1 insertion in ZmCCT caused selective depletion of H3K4me3 and enrichment of methylated GC to suppress the pathogen-induced ZmCCT expression, resulting in disease susceptibility. Moreover, ZmCCT-mediated resistance to Gibberella stalk rot is not affected by photoperiod sensitivity. This chromatin-based regulatory mechanism enables ZmCCT to be more precise and timely in defense against F. graminearum infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据