4.6 Article

Driving protocol for a Floquet topological phase without static counterpart

期刊

NEW JOURNAL OF PHYSICS
卷 19, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/aa8646

关键词

Floquet topological insulator; ultracold atoms; driven systems

资金

  1. Dutch Ministry of Education, Culture and Science (OCW)
  2. excellence cluster 'The Hamburg Centre for Ultrafast Imaging-Structure, Dynamics and Control of Matter at the Atomic Scale'

向作者/读者索取更多资源

Periodically driven systems play a prominent role in optical lattices. In these ultracold atomic systems, driving is used to create a variety of interesting behaviours, of which an important example is provided by topological states of matter. Such Floquet topological phases have a richer classification than their equilibrium counterparts. Although there exist analogues of the equilibrium topological phases that are characterised by a Chern number, the corresponding Hall conductivity, and protected edge states, there is an additional possibility. This is a phase that has a vanishing Chern number and no Hall conductivity, but nevertheless hosts anomalous topological edge states (Rudner et al (2013 Phys. Rev. X 3 031005)). Due to experimental difficulties associated with the observation of such a phase, it has not been experimentally realised in optical lattices so far. In this paper, we show that optical lattices prove to be a good candidate for its realisation and observation, because they can be driven in a controlled manner. Specifically, we present a simple shaking protocol that serves to realise this special Floquet phase, discuss the specific properties that it has, and propose a method to experimentally detect this fascinating topological phase that has no counterpart in equilibrium systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据