4.6 Article

The potential use of glucose oxidase-imprinted polymer-coated electrodes for biofuel cells

期刊

NEW JOURNAL OF CHEMISTRY
卷 41, 期 23, 页码 14646-14651

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7nj02049j

关键词

-

资金

  1. Ministry of Science and Technology of ROC [MOST 105-2221-E-390-026]
  2. NSYSU-NUK Joint Research Project [NSYSUNUK 106-P006]

向作者/读者索取更多资源

Molecularly imprinted polymers (MIPs) have proven useful for the surface immobilization of enzymes via the complementary cavities they present. Immobilization in this manner may prove useful in maintaining enzymatic efficacy. In biofuel cell applications, the thickness of an imprinted polymer layer coated on the electrode can be effectively controlled to yield the desired electron conductivity. In this work, glucose oxidase (GOx) and laccase (Lc) were imprinted on the surfaces of the anode and cathode of a biofuel cell at concentrations of 0.1 and 0.02 mg mL(-1), respectively, using a poly(ethylene-co-vinyl alcohol) matrix. The effectiveness of imprinting was maximized by using 32 mole% ethylene and an enzyme concentration of 0.1 wt%. The surface morphology of the imprinted cavities and their interactions with the imprinted proteins were investigated by atomic force microscopy, revealing both the surface morphology of the imprinted cavities and the attractive force between the protein and the imprinted matrix. Finally, the output of the enzymatic biofuel cells was measured. Immobilization of the enzymes using the MIP electrodes gave substantially improved performance, compared to passive adsorption on either polymer-coated or bare electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据