4.6 Article

Effective treatment of emulsified oil wastewater by the coagulation- flotation process

期刊

RSC ADVANCES
卷 8, 期 71, 页码 40639-40646

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra06565a

关键词

-

资金

  1. National Natural Science Foundation of China [51508268]
  2. Natural Science Foundation of the Jiangsu Province in China [BK20150951]
  3. National Key Research and Development Program of China [2017YFB0602500]
  4. 2018 Six Talent Peaks Project of Jiangsu Province [JNHB-038]

向作者/读者索取更多资源

Ship emulsified oil wastewater was used as the research object in this study. The highly efficient coagulant demulsification degreasing mechanism and microbubble flotation technology were combined and the effects of coagulant type and dosage amount on the demulsification of emulsified oil wastewater were evaluated. The influence of the mixed coagulation effect of pH values, temperature, and hydraulic condition parameters were determined and water intake, air intake, and oil content were regulated. The coagulant for the demulsification of emulsified oil wastewater was screened; the dosage was 500 mg L-1, and the removal capacity of the coagulant was in the following order: polyaluminum ferric chloride (PAFC) > polyaluminum chloride (PAC) > polysilicate aluminum ferric sulfate (PSAFS) > alum > Al-2(SO4)(3) > polyferric sulfate > FeCl3. Polyacrylamide (PAM) with added water was used to further reduce the oil content. The PAFC, PAC, and PSAFS were selected as coagulation-air flotation dynamic test alternative agents. The investment quantities of PAFC, PSAFS and PAM were 300 mg L-1, 300 mg L-1 and 30 mg L-1, respectively. The stirring time was 5 min, the pH value was 6.5-6.9, the flow rate was 0.25 m(3) h(-1), the oil content of the emulsified oil wastewater was 3000-5000 mg L-1 and the effluent oil was stable below 15 ppm. The microbubble generation device using air flotation effluent was used in the two air flotation treatments to enhance the device efficiency. The air flotation device adopted the structural design of the upper part of the water inlet and the lower part of the micro-air bubble, which can increase the collision probability of the microbubble and improve the efficiency of oil removal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据