4.5 Article

Analytical modelling of congestion for 6LoWPAN networks

期刊

ICT EXPRESS
卷 4, 期 4, 页码 209-215

出版社

ELSEVIER
DOI: 10.1016/j.icte.2017.11.001

关键词

Markov chain; Queuing theory; Congestion; 6LoWPAN network

向作者/读者索取更多资源

The IPv6 over Low-Power Wireless Personal Area Network (6LoWPAN) protocol stack is a key part of the Internet of Things (IoT) where the 6LoWPAN motes will account for the majority of the IoT 'things'. In 6LoWPAN networks, heavy network traffic causes congestion which significantly affects the overall performance and the quality of service metrics. In this paper, a new analytical model of congestion for 6LoWPAN networks is proposed using Markov chain and queuing theory. The derived model calculates the buffer loss probability and the channel loss probability as well as the number of received packets at the final destination in the presence of congestion. Also, we calculate the actual wireless channel capacity of IEEE 802.15.4 with and without collisions based on Contiki OS implementation. The validation of the proposed model is performed with different scenarios through simulation by using Contiki OS and Cooja simulator. Simulation results show that the analytical modelling of congestion has an accurate agreement with simulation. (C) 2017 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据