4.6 Review

The Seasonal Snow Cover Dynamics: Review on Wind-Driven Coupling Processes

期刊

FRONTIERS IN EARTH SCIENCE
卷 6, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2018.00197

关键词

seasonal snow; mountains; snow-atmosphere interactions; wind; snowfall; snow drift; turbulent fluxes

资金

  1. Swiss National Science Foundation [P300P2_164644]
  2. Commission for Technology and Innovation CTI [2013.0288]
  3. NSERC [RGPIN-2014-06543]
  4. Swiss National Science Foundation (SNF) [P300P2_164644] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The temporal evolution of seasonal snow cover and its spatial variability in environments such as mountains, prairies or polar regions is strongly influenced by the interactions between the atmospheric boundary layer and the snow cover. Wind-driven coupling processes affect both mass and energy fluxes at the snow surface with consequences on snow hydrology, avalanche hazard, and ecosystem development. This paper proposes a review on these processes and combines the more recent findings obtained from observations and modeling. The spatial variability of snow accumulation across multiple scales can be associated to wind-driven processes ranging from orographic precipitation at large scale to preferential-deposition of snowfall and wind-induced transport of snow on the ground at smaller scales. An overview of models of varying complexity developed to simulate these processes is proposed in this paper. Snow ablation is also affected by wind-driven processes. Over continuous snow covers, turbulent fluxes of latent and sensible heat, as well as blowing snow sublimation, modify the mass, and energy balance of the snowpack and their representation in numerical models is associated with many uncertainties. As soon as the snow cover becomes patchy in spring local heat advection induces the development of stable internal boundary layers changing heat exchange toward the snow. Overall, wind-driven processes play a key role in all the different stages of the evolution of seasonal snow. Improvements in process understanding particularly at the mountain-ridge and the slope scale, and processes representations in models at scales up to the mountain range scale, will be the basis for improved short-term forecast and climate projections in snow-covered regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据