4.2 Article

Quantitative influence of coast effect on geomagnetically induced currents in power grids: a case study

期刊

出版社

EDP SCIENCES S A
DOI: 10.1051/swsc/2018046

关键词

geomagnetically induced currents (GIC); coast effect; 3D Earth conductivity; FEM

资金

  1. National Key Research and Development Plan [2016YFC0800103]
  2. National Natural Science Foundation of China [51677068]
  3. Fundamental Research Funds for the Central Universities [2018QN007]

向作者/读者索取更多资源

In recent years, several magnetic storms have disrupted the normal operation of power grids in the mid-low latitudes. Data obtained from the monitoring of geomagnetically induced currents (GIC) indicate that GIC tend to be elevated at nodes near the ocean-land interface. This paper discusses the influence of the geomagnetic coast effect on GIC in power grids based on geomagnetic data from a coastal power station on November 9, 2004. We used a three-dimensional (3D) Earth conductivity model to calculate the induced electric field using the finite element method (FEM), and compared it to a one-dimensional (1D) layered model, which could not incorporate a coastal effect. In this manner, the GIC in the Ling'ao power plant was predicted while taking the coast effect into consideration in one case and ignoring it in the other. We found that the GIC predicted by the 3D model, which took the coastal effect into consideration, showed only a 2.9% discrepancy with the recorded value, while the 1D model underestimated the GIC by 23%. Our results demonstrate that the abrupt lateral variations of Earth conductivity structures significantly influence GIC in the power grid. We can infer that high GIC may appear even at mid-low latitude areas that are subjected to the coast effect. Therefore, this effect should be taken into consideration while assessing GIC risk when power networks are located in areas with lateral shifts in Earth conductivity structures, such as the shoreline and the interfaces of different geological structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据