4.2 Article

Climate and synchrony with conspecifics determine the effects of flowering phenology on reproductive success in Silene acaulis

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/15230430.2018.1548866

关键词

Phenology; pollination; climate change; flowering synchrony; Silene acaulis

资金

  1. National Science Foundation [DBI-1460906]
  2. NSF [DEB-13005955, DEB-13003746]
  3. LABEX/Tulip

向作者/读者索取更多资源

Changes in flowering phenology resulting from climate change could impact individual plant fitness and population viability. Flowering phenology can mediate plant reproductive success in several ways, including pollinator interactions, flowering synchrony with conspecifics, and timing of suitable abiotic conditions. We explored factors that control phenology and reproductive success for an alpine cushion plant, Silene acaulis, across two years and four sites, totaling 1,123 plants, in Colorado, USA. We investigated relationships between flowering time, flowering synchrony, and reproductive success with local abiotic conditions and pollinator behavior. Mean flowering phenology was strongly correlated with the timing of snowmelt across sites and years. Relative to mean flowering times, earlier flowering plants generally produced more flowers and experienced greater soil moisture during flowering but reduced synchrony with conspecifics. Fruit set tended to increase with greater soil moisture, synchrony during flowering, and earlier flowering times. Pollinator visitation increased with local Silene flower density. Earlier snowmelt and drier conditions later in the season favor earlier flowering, but these effects are partially counteracted by the positive effects of synchrony, perhaps because of changes in pollinator visitation. Overall, while both biotic and abiotic effects influence reproductive success, late-season drought may outweigh the benefits of flowering synchrony to increasingly favor earlier flowering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据