4.4 Article

Developmental exposure to low level ambient ultrafine particle air pollution and cognitive dysfunction

期刊

NEUROTOXICOLOGY
卷 69, 期 -, 页码 217-231

出版社

ELSEVIER
DOI: 10.1016/j.neuro.2017.12.003

关键词

Ultrafine particles; Air pollution; Learning; Repeated learning; Locomotor activity; Progressive ratio; Delay of reward; Differential reinforcement of low rate; Motivation

资金

  1. [NIHES001247]
  2. [ES019105]
  3. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [R21ES019105, P30ES005022, R01ES025541, P30ES001247] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Developmental exposures to ambient ultrafine particles (UFPs) can produce multiple neuropathological and neurochemical changes that might contribute to persistent alterations in cognitive-type functions. The objective of the current study was to test the hypothesis that developmental UFP exposure produced impairments in learning, memory and impulsive-like behaviors and to determine whether these were selective and thus independent of deficits in other behavioral domains such as motor activity or motivation. Performance on measures of learning (repeated learning), memory (novel object recognition, NOR), impulsive-like behavior (differential reinforcement of low rate (DRL), schedule of reward and delay of reward (DOR)), motor activity (locomotor behavior) and motivation (progressive ratio schedule) were examined in adult mice that had been exposed to concentrated (10-20x) ambient ultrafine particles (CAPS) averaging approximately 45 ug/m(3) particle mass concentrations from postnatal day (PND) 4-7 and 10-13 for 4 h/day. Given the number of behavioral tests, animals were tested in different groups. Results showed male-specific alterations in learning and memory functions (repeated learning, NOR and DRL) specifically during transitions in reinforcement contingencies (changes in rules governing behavior) that did not appear to be related to alterations in locomotor function or motivation. Females did not exhibit cognitive-like deficits at these exposure concentrations, but displayed behaviors consistent with altered motivation, including increases in response rates during repeated learning, significantly increased latencies to respond on the delay of reward paradigm, and reductions in the progressive ratio break point. Consistent with our prior findings, male-specific learning and memory-related deficits were seen and occurred even at relatively low level developmental UFP exposures, while females show alterations in motivational behaviors but not final performance. These findings add to the evidence suggesting the need to regulate UFP levels. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据