4.4 Article

Acute exposure to chlorpyrifos caused NADPH oxidase mediated oxidative stress and neurotoxicity in a striatal cell model of Huntington's disease

期刊

NEUROTOXICOLOGY
卷 60, 期 -, 页码 54-69

出版社

ELSEVIER
DOI: 10.1016/j.neuro.2017.03.004

关键词

Chlorpyrifos; Oxidative stress; Huntington's disease; Disease-toxicant interaction; Antioxidants; NADPH oxidase

资金

  1. Oberlin College Office of Foundation
  2. Oberlin College

向作者/读者索取更多资源

We hypothesized that expression of mutant Huntingtin (HTT) would modulate the neurotoxicity of the commonly used organophosphate insecticide, chlorpyrifos (CPF), revealing cellular mechanisms underlying neurodegeneration. Using a mouse striatal cell model of HD, we report that mutant HD cells are more susceptible to CPF-induced cytotoxicity as compared to wild-type. This CPF-induced cytotoxicity caused increased production of reactive oxygen species, reduced glutathione levels, decreased superoxide dismutase activity, and increased malondialdehyde levels in mutant HD cells relative to wild-type. Furthermore, we show that co-treatment with antioxidant agents attenuated the CPF-induced ROS levels and cytotoxicity. Co-treatment with a NADPH oxidase (NOX) inhibitor, apocynin, also attenuated the CPF-induced ROS production and neurotoxicity. CPF caused increased NOX activity in mutant HD lines that was ameliorated following co-treatment with apocynin. Finally, CPF-induced neurotoxicity significantly increased the protein expression of nuclear factor erythroid 2-related factor (Nrf2) in mutant HD cells as compared to wild-type. This study is the first report of CPF-induced toxicity in HD pathophysiology and suggests that mutant HTT and CPF exhibit a disease-toxicant interaction wherein expression of mutant HTT enhances CPF-induced neurotoxicity via a NOX-mediated oxidative stress mechanism to cause neuronal loss in the full length HTT expressing striatal cells. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据