4.6 Article

Bearing Fault Diagnosis Under Variable Working Conditions Based on Domain Adaptation Using Feature Transfer Learning

期刊

IEEE ACCESS
卷 6, 期 -, 页码 76187-76197

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2018.2883078

关键词

Fault diagnosis; vibration signal; domain adaptation; feature transfer learning

资金

  1. Outstanding Innovation Scholarship for Doctoral Candidate of Double First Rate Construction Disciplines of CUMT

向作者/读者索取更多资源

Bearings, as universal components, have been widely used in the important position of rotating machinery. However, due to the distribution divergence between training data and test data caused by variable working conditions, such as different rotation speeds and load conditions, most of the fault diagnosis models built during the training stage are not applicable for the detection in the test stage. The models dramatically lead to the performance degradation for fault classification. In this paper, a novel bearing fault diagnosis method, domain adaptation by using feature transfer learning (DAFTL) under variable working conditions, is proposed to solve this performance degradation issue. The dataset of normal bearings and faulty bearings are obtained via the fast Fourier transformation of raw vibration signals, under different motor speeds and load conditions. Then, the marginal and conditional distributions are reduced simultaneously between training data and test data by refining pseudo test labels based on the maximum mean discrepancy and domain invariant clustering in a common space. Ultimately, a transferable feature representation for training data and test data is achieved. With the help of the nearest-neighbor classifier built on the transferable features, bearing faults are identified in this common space. Extensive experimental results show that the DAFTL can identify the bearing fault accurately under variable working conditions and outperforms other competitive approaches.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据