4.6 Article

Unsupervised Learning of Spatiotemporal Interictal Discharges in Focal Epilepsy

期刊

NEUROSURGERY
卷 83, 期 4, 页码 683-691

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/neuros/nyx480

关键词

Epileptogenic tissue; Interictal epileptiform discharges; Automated detection; Non-negative matrix factorization; Intracranial monitoring

资金

  1. NINDS NIH HHS [R25 NS070680] Funding Source: Medline

向作者/读者索取更多资源

BACKGROUND: Interictal epileptiform discharges are an important biomarker for localization of focal epilepsy, especially in patients who undergo chronic intracranial monitoring. Manual detection of these pathophysiological events is cumbersome, but is still superior to current rule-based approaches in most automated algorithms. OBJECTIVE: To develop an unsupervised machine-learning algorithm for the improved, automated detection and localization of interictal epileptiform discharges based on spatiotemporal pattern recognition. METHODS: We decomposed 24 h of intracranial electroencephalography signals into basis functions and activation vectors using non-negative matrix factorization (NNMF). Thresholding the activation vector and the basis function of interest detected interictal epileptiform discharges in time and space (specific electrodes), respectively. We used convolutive NNMF, a refined algorithm, to add a temporal dimension to basis functions. RESULTS: The receiver operating characteristics for NNMF-based detection are close to the gold standard of human visual-based detection and superior to currently available alternative automated approaches (93% sensitivity and 97% specificity). The algorithm successfully identified thousands of interictal epileptiform discharges across a full day of neurophysiological recording and accurately summarized their localization into a single map. Adding a temporal window allowed for visualization of the archetypal propagation network of these epileptiform discharges. CONCLUSION: Unsupervised learning offers a powerful approach towards automated identification of recurrent pathological neurophysiological signals, which may have important implications for precise, quantitative, and individualized evaluation of focal epilepsy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据