4.6 Article

Self-consistent Hartree-Fock approach to many-body localization

期刊

PHYSICAL REVIEW B
卷 98, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.224205

关键词

-

资金

  1. Technical University of Munich-Institute for Advanced Study - German Excellence Initiative
  2. European Union [291763]
  3. DFG [KN 1254/1-1, TRR80, F8]
  4. NSF [DMR-1653271]
  5. National Science Foundation [PHY-1607611]
  6. Austrian Science Fund (FWF) [F8] Funding Source: Austrian Science Fund (FWF)

向作者/读者索取更多资源

In this paper, we develop a self-consistent Hartree-Fock approach to theoretically study the far-from-equilibrium quantum dynamics of interacting fermions, and apply this approach to explore the onset of many-body localization (MBL) in these systems. We investigate the dynamics of a state with a nonequilibrium density profile; we find that at weak disorder the density profile equilibrates rapidly, whereas for strong disorder it remains frozen on the accessible timescales. We analyze this behavior in terms of the Hartree-Fock self-energy. At weak disorder, the self-energy fluctuates strongly and can be interpreted as a self-consistent noise process. By contrast, at strong disorder the self-energy evolves with a few coherent oscillations which cannot delocalize the system. Accordingly, the nonequilibrium site-resolved spectral function shows a broad spectrum at weak disorder and sharp spikes at strong disorder. Our Hartree-Fock theory incorporates spatial fluctuations and rare-region effects. As a consequence, we find subdiffusive relaxation in random systems; but, when the system is subjected to weak quasiperiodic potentials, the subdiffusive response ceases to exist, as rare region effects are absent in this case. This self-consistent Hartree-Fock approach can be regarded as a relatively simple theory that captures much of the MBL phenomenology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据