4.6 Article

Layer k-projection and unfolding electronic bands at interfaces

期刊

PHYSICAL REVIEW B
卷 98, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.245421

关键词

-

资金

  1. National Natural Science Foundation of China [11774084]
  2. US National Science Foundation [EFMA-1741673]

向作者/读者索取更多资源

The k-projection method provides an approach to separate the contributions from different constituents in heterostructure systems, and can act as an aid to connect the results of experiments and calculations. We show that the technique can be used to unfold the calculated electronic bands of interfaces and supercells, and provide local band structure by integrating the projected states over specified regions of space, a step that can be implemented efficiently using fast Fourier transforms. We apply the method to investigate the effects of interfaces in heterostructures consisting of a graphene bilayer on H-saturated SiC(0001), BAs monolayer on the ferromagnetic semiconductor CrI3, silicene on Ag(111), and to the Bi2Se3 surface. Our results reveal that the band structure of the graphene bilayer around the Dirac point is strongly dependent on the termination of SiC(0001): on the C face, the graphene is n doped and a gap of similar to 0.13 eV is opened, whereas on the Si face, the graphene is essential unchanged and neutral. We show that for BAs/CrI3, the magnetic proximity effect can effectively induce a spin splitting up to about 50 meV in BAs. For silicene/Ag(111), our calculations reproduce the angle-resolved photoemission spectroscopy results, including linearly dispersing bands at the edge of the first Brillouin zone of Ag(111); although these states result from the interaction between the silicene overlayer and the substrate, we demonstrate that they are not Dirac states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据