4.6 Review

Chronic kidney disease: considerations for monitoring skeletal muscle health and prescribing resistance exercise

期刊

CLINICAL KIDNEY JOURNAL
卷 11, 期 6, 页码 822-831

出版社

OXFORD UNIV PRESS
DOI: 10.1093/ckj/sfy054

关键词

CKD; exercise; pre-dialysis; resistance training; ultrasonography

资金

  1. Veterans Affairs (VA) Center for Innovation [AM-251 12-11-2015]
  2. Georgetown-Howard Universities Center for Clinical and Translational Science Consortium (NIH/NCATS) [UL1TR000101]
  3. VA Office of Academic Affiliations [38U.S.C 7406]
  4. Rehabilitation Research & Development Service at the VA Office of Research and Development [IK2RX001854-01]

向作者/读者索取更多资源

Skeletal muscle wasting has gained interest as a primary consequence of chronic kidney disease (CKD) due to the relationship between skeletal muscle mass, mortality and major adverse cardiovascular events in this population. The combination of reductions in physical function, skeletal muscle performance and skeletal muscle mass places individuals with CKD at greater risk of sarcopenia. Therefore the monitoring of skeletal muscle composition and function may provide clinical insight into disease progression. Dual-energy X-ray absorptiometry and bioelectrical impedance analysis are frequently used to estimate body composition in people with CKD within clinical research environments, however, their translation into clinical practice has been limited. Proxy measures of skeletal muscle quality can be obtained using diagnostic ultrasound, providing a cost-effective and accessible imaging modality to aid further clinical research regarding changes in muscle composition. Clinicians and practitioners should evaluate the strengths and limitations of the available technology to determine which devices are most appropriate given their respective circumstances. Progressive resistance exercise has been shown to improve skeletal muscle hypertrophy of the lower extremities, muscular strength and health-related quality of life in end-stage renal disease, with limited evidence available in CKD predialysis. Fundamental principles (i.e. specificity, overload, variation, reversibility, individuality) can be used in the development of more advanced programs focused on improving specific neuromuscular and functional outcomes. Future research is needed to determine the applicability of skeletal muscle monitoring in clinical settings and the feasibility and efficacy of more advanced resistance exercise approaches in those with CKD predialysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据