4.7 Article

N-oleoyldopamine modulates activity of midbrain dopaminergic neurons through multiple mechanisms

期刊

NEUROPHARMACOLOGY
卷 119, 期 -, 页码 111-122

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2017.04.011

关键词

Dopamine; Parkinson's disease; Patch-clamp; Action potential current; Endocannabinoids; Substantia nigra

资金

  1. Interdisciplinary graduate school for brain research and translational neuroscience iBrain

向作者/读者索取更多资源

N-oleoyl-dopamine (OLDA) is an amide of dopamine and oleic acid, synthesized in catecholaminergic neurons. The present study investigates OLDA targets in midbrain dopaminergic (DA) neurons. Substantia Nigra compacta (SNc) DA neurons recorded in brain slices were excited by OLDA in wild type mice. In transient receptor potential vanilloid 1 (TRPV1) knockout (KO) mice, however, SNc DA neurons displayed sustained inhibition of firing. In the presence of the dopamine type 2 receptor (D2R) antagonist sulpiride or the dopamine transporter blacker nomifensine no such inhibition was observed. Under sulpiride OLDA slightly excited SNc DA neurons, an action abolished upon combined application of the cannabinoid1 and 2 receptor antagonists AM251 and AM630. In ventral tegmental area (VTA) DA neurons from TRPV1 KO mice a transient inhibition of firing by OLDA was observed. Thus OLDA modulates the firing of nigrostriatal DA neurons through interactions with TRPV1, cannabinoid receptors and dopamine uptake. These findings suggest further development of OLDA-like tandem molecules for the treatment of movement disorders including Parkinson's disease. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据