3.8 Proceedings Paper

Predicting Citywide Passenger Demand via Reinforcement Learning from Spatio-Temporal Dynamics

出版社

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3286978.3286991

关键词

Reinforcement Learning; spatial-temporal dynamics; passenger demand prediction

向作者/读者索取更多资源

The global urbanization imposes unprecedented pressure on urban infrastructure and public resources. The population explosion has made it challenging to satisfy the daily needs of urban residents. 'Smart City' is a solution that utilizes different types of data collection sensors to help manage assets and resources intelligently and more efficiently. Under the Smart City umbrella, the primary research initiative in improving the efficiency of car-hailing services is to predict the citywide passenger demand to address the imbalance between the demand and supply. However, predicting the passenger demand requires analysis on various data such as historical passenger demand, crowd outflow, and weather information, and it remains challenging to discover the latent relationships among these data. To address this challenge, we propose to improve the passenger demand prediction via learning the salient spatialtemporal dynamics within a reinforcement learning framework. Our model employs an information selection mechanism to focus on the most distinctive data in historical observations. This mechanism can automatically adjust the information zone according to the prediction performance to find the optimal choice. It also ensures the prediction model to take full advantage of the available data by introducing the positive and excluding the negative correlations. We have conducted experiments on a large-scale real-world dataset that covers 1.5 million people in a major city in China. The results show our model outperforms state-of-the-art and a series of baselines by a large margin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据