4.7 Article

Defects in mitophagy promote redox-driven metabolic syndrome in the absence of TP53INP1

期刊

EMBO MOLECULAR MEDICINE
卷 7, 期 6, 页码 802-818

出版社

WILEY
DOI: 10.15252/emmm.201404318

关键词

autophagy; diabetes; mitochondria; obesity; oxidative stress

资金

  1. Institut National de la Sante et de la Recherche Medicale
  2. Centre National de la Recherche Scientifique
  3. Institut National du Cancer
  4. Association pour la Recherche sur le Cancer
  5. La Ligue Nationale contre le Cancer
  6. University of Nice
  7. Programme Hospitalier de Recherche Clinique (Centre Hospitalier Universitaire of Nice)
  8. charity (Association Francaise pour l'Etude du Foie (AFEF/LFB))
  9. charity (European Foundation for the study of Diabetes EFSD/Lilly)
  10. French Government (National Research Agency, ANR) through the 'Investments for the Future' LABEX SIGNALIFE: program [ANR-11-LABX-0028-01]
  11. Wellcome Trust [WT098424AIA]
  12. MRC [MR/J0003042/1]
  13. Royal Society
  14. MRC [MR/K001981/1] Funding Source: UKRI
  15. Medical Research Council [MR/K001981/1] Funding Source: researchfish

向作者/读者索取更多资源

The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据