4.6 Article

A graph regularized dimension reduction method for out-of-sample data

期刊

NEUROCOMPUTING
卷 225, 期 -, 页码 58-63

出版社

ELSEVIER
DOI: 10.1016/j.neucom.2016.11.012

关键词

Dimension reduction; Out-of-sample data; Graph regularized PCA; Manifold learning; Clustering

向作者/读者索取更多资源

Among various dimension reduction techniques, Principal Component Analysis (PCA) is specialized in treating vector data, whereas Laplacian embedding is often employed for embedding graph data. Moreover, graph regularized PCA, a combination of both techniques, has also been developed to assist the learning of a low dimensional representation of vector data by incorporating graph data. However, these approaches are confronted by the out-of-sample problem: each time when new data is added, it has to be combined with the old data before being fed into the algorithm to re-compute the eigenvectors, leading to enormous computational cost. In order to address this problem, we extend the graph regularized PCA to the graph regularized linear regression PCA (grlrPCA). grlrPCA eliminates the redundant calculation on the old data by first learning a linear function and then directly applying it to the new data for its dimension reduction. Furthermore, we derive an efficient iterative algorithm to solve grlrPCA optimization problem and show the close relatedness of grlrPCA and unsupervised Linear Discriminant Analysis at infinite regularization parameter limit. The evaluations of multiple metrics on seven realistic datasets demonstrate that grlrPCA outperforms established unsupervised dimension reduction algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据